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Fig. 1: OMNIRETARGET enables reinforcement learning policies to learn complex, long-horizon loco-manipulation skills
in challenging environments that transfer zero-shot from simulation to a Unitree G1 humanoid. Thanks to the high-quality
interaction-preserving motion retargeting, these policies are trained and deployed in a minimal and unified way: it involves
only 5 rewards, 4 robot domain randomization terms, and a purely proprioceptive observation space, shared by all tasks.
Demonstrated behaviors include (a) 30-second parkour course involving chair moving, stepping & vault, and jump & roll,
(b) object transportation, (c) crawling on a slope, and (d) fast platform climbing and sitting.

Abstract— A dominant paradigm for teaching humanoid
robots complex skills is to retarget human motions as kine-
matic references to train reinforcement learning (RL) policies.
However, existing retargeting pipelines often struggle with
the significant embodiment gap between humans and robots,
producing physically implausible artifacts like foot-skating and
penetration. More importantly, common retargeting methods
neglect the rich human-object and human-environment interac-
tions essential for expressive locomotion and loco-manipulation.
To address this, we introduce OMNIRETARGET, an interaction-
preserving data generation engine based on an interaction
mesh that explicitly models and preserves the crucial spatial
and contact relationships between an agent, the terrain, and
manipulated objects. By minimizing the Laplacian deformation
between the human and robot meshes while enforcing kinematic
constraints, OMNIRETARGET generates kinematically feasible
trajectories. Moreover, preserving task-relevant interactions en-
ables efficient data augmentation, from a single demonstration
to different robot embodiments, terrains, and object config-
urations. We comprehensively evaluate OMNIRETARGET by
retargeting motions from OMOMO [1], LAFAN1 [2], and our
in-house MoCap datasets, generating over 8-hour trajectories
that achieve better kinematic constraint satisfaction and contact
preservation than widely used baselines. Such high-quality data
enables proprioceptive RL policies to successfully execute long-
horizon (up to 30 seconds) parkour and loco-manipulation skills
on a Unitree G1 humanoid, trained with only 5 reward terms
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and simple domain randomization shared by all tasks, without
any learning curriculum. All code, retargeted datasets, and
trained policies will be publicly released. Result videos can be
found at https://omniretarget.github.io

I. INTRODUCTION

The quest to enable humanoid robots to perform complex
whole-body scene- and object-interaction tasks has long been
constrained by a fundamental data bottleneck. While deep
reinforcement learning (RL) has shown remarkable success
in robot control, efficient exploration is highly sensitive to
reward engineering [3]. This challenge is further amplified on
humanoids, whose high-dimensional action spaces and com-
plex dynamics make learning natural, expressive behaviors
from scratch both difficult and inefficient.

To address these challenges, imitating human motions
offers a powerful alternative for learning whole-body control,
especially for complex scene interactions. Human demonstra-
tions capture dynamic coordination, such as lifting objects
while walking on uneven terrain, and have been used effec-
tively in animation [4], [5], [6]. A critical challenge arises in
robotics: unlike virtual characters, physical humanoids only
approximate human morphology, with significant differences
in shape, proportion and degrees of freedom. This embodi-
ment gap means that simply adapting human motions is in-
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sufficient; it is essential to also adapt their scene interactions
to the robot’s specific form to generate usable references.

To this end, researchers have pursued two main strategies.
The first one is teleoperation [7], [8], [9], where only a
human operator’s motions are retargeted to control the robot
online. This approach leverages the human operator for real-
time adaptation, which sidesteps the need for automatic
interaction retargeting. However, despite the advantage of on-
line feedback, the method remains labor-intensive and does
not scale well for large-scale data generation. The second
and more scalable strategy is offline interaction retargeting,
which holistically adapts both the human’s motion and their
scene interactions to the robot’s specific embodiment.

However, most existing retargeting methods [10], [9],
[11] fall short in this regard. They predominantly rely on
unconstrained or softly-penalized optimization, resulting in
implausible motions with artifacts such as foot skating and
penetration. More importantly, they do not explicitly consider
interaction preservation—i.e., maintaining spatial and contact
relationship—in the retargeting formulation, relying instead
on simple keypoint matching. Consequently, the resulting
references are of lower quality, which in turn complicates
the downstream RL policy training [12], [8], [13].

In this work, we introduce OMNIRETARGET, an open-
source data generation engine that transforms human demon-
strations into diverse, high-quality kinematic references for
humanoid whole-body control. By modeling spatial and
contact relationships between robots, objects, and terrains
via an interaction mesh [14], OMNIRETARGET preserves
essential interactions and generates kinematically feasible
variations. While existing methods require separate demon-
strations for each variation—making data collection costly
and limiting coverage—OMNIRETARGET addresses this bot-
tleneck directly. Inspired by data augmentation frameworks
for contact-rich manipulation [15], our framework automati-
cally augments a single demonstration into a large number of
training examples across object configurations, shapes, robot
embodiments, and environments.

Our pipeline employs constrained optimization to enforce
physical feasibility, including collision avoidance, joint lim-
its, and foot contact stability, while minimizing interaction
mesh deformation. The resulting motions are interaction-
preserving and exhibit only minimal kinematic artifacts,
providing dense learning signals that accelerate RL with
minimal reward engineering. On a diverse suite of whole-
body interaction tasks such as box lifting, platform climbing,
and slope crawling, policies trained on OMNIRETARGET
datasets outperform those from prior retargeting methods in
both motion quality and robustness, with successful zero-shot
sim-to-real transfer onto a physical humanoid robot.

Our contributions are fourfold:
1) The first interaction-preserving humanoid retargeting

framework that handles rich robot-object-terrain inter-
actions while enforcing hard physical constraints.

2) A systematic data augmentation pipeline that trans-
forms a single human demonstration into a diverse,
large-scale set of high-quality kinematic trajectories on
various robot embodiments.

3) A large-scale, open-source dataset of retargeted,
kinematically-feasible loco-manipulation trajectories.

4) Successful zero-shot sim-to-real transfer of propriocep-
tive RL policies on a physical humanoid, demonstrat-
ing a diverse set of scene-interaction tasks, including
a long, agile sequence of object carrying, platform
climbing, jumping, and rolling.

II. RELATED WORKS

A. Motion Retargeting

In computer graphics, transferring motions across char-
acters has been extensively explored. Researchers have em-
ployed optimization-based methods to retarget human mo-
tions to avatars by preserving distances and orientations
between keypoints [16], minimizing deformation energy
[14], [17], or scaling the motions to satisfy hard constraints
[18]. Others leverage data-driven methods that map diverse
skeletons to a canonical representation [19], solve inverse
kinematics with neural networks [20], or use reinforcement
learning to preserve an interaction graph [21].

Retargeting motions to humanoid robots introduces chal-
lenges beyond character animation, particularly the need
to enforce physical constraints. For example, PHC [10], a
graphics method adopted in robotics [13], [8], uses keypoint
matching with unconstrained optimization, often leading
to penetration, foot skating, and lack of object or scene
awareness. Similarly, GMR [9] extends keypoint matching
to orientations but suffer the same issues. VideoMimic [11]
improves realism with soft contact and collision penalties but
offers no guarantees and requires careful tuning.

The closest method to ours is Interaction Mesh based
Motion Adaptation (IMMA) [22], which also leverages an
interaction mesh [14] to preserve the spatial relationship
between body parts. However, it is not open-sourced and
ignores kinematic limits and interactions with the environ-
ment or manipulated objects. In contrast, OMNIRETARGET
unifies all hard constraints, including foot sticking, non-
penetration, and joint and velocity limits, while explicitly
preserving environment and object interactions.

B. Learning-Based Humanoid Whole-Body Control

Recent learning-based whole-body control has enabled
humanoids to traverse dynamic scenes and manipulate ob-
jects [23], [24], [25], [26], [27], [28], [29], [30], [31]. These
methods typically train with hand-crafted rewards or task
interfaces (e.g., velocity tracking, contact schedules, end-
effector targets) but depend on extensive reward engineering
and mostly fail to yield natural, human-level motions.

Motion imitation offers a promising alternative. In graph-
ics, DeepMimic [4] shows that using human references yields
natural, human-like behaviors with agile, dynamic motions.
However, applying this approach to humanoid robots remains
difficult due to the lack of reliable open-source kinematic
retargeting pipelines. With suboptimal reference motions,
practitioners are forced to either manually clean the data [12]
or re-introduce extensive reward engineering, such as ad-hoc
regularizers for contact, slipping, and air time, to compensate
for artifacts [9], [13], [32]. In contrast, trackers with minimal
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Fig. 2: OMNIRETARGET overview. Human demonstrations are retargeted to the robot via interaction-mesh–based
constrained optimization. Each spatial and shape augmentation is solved as a new optimization, producing diverse trajectories
that serve as references for RL training with minimal reward design and domain randomization, enabling zero-shot transfer
to real-world humanoids.

reward formulation like BeyondMimic [33] achieve state-of-
the-art results on hardware with high-fidelity references [34],
but those are scarce and robot-only, without interactions.

Beyond single-character motion, human–scene interaction
data has proven effective for terrain traversal and loco-
manipulation in character animation [5], [6], but translating
this to robotics remains challenging. VideoMimic [11] ap-
plies this idea to human–terrain traversal by reconstructing
motions and terrains from video, but suffers from artifacts
and is limited to static–scene interactions. To bridge this
gap, OMNIRETARGET enables natural, agile robot-object-
scene interactions with high-quality reference from retarget-
ing without manual post-processing or reward engineering.

C. Data Generation for Humanoid Loco-Manipulation

The demand for whole-body interaction data has motivated
many prior works on data generation. One approach is
direct human teleoperation [35], [7], [8], [9], [36]. While it
provides online feedback, teleoperation is difficult to scale:
it’s labor-intensive, prone to operator fatigue, and limited by
the embodiment gap between human and robot kinematics.
The lack of rich haptic feedback and difficulty stabilizing
extreme motions (e.g., deep squats) further constrain its
applicability. To address these scaling challenges, automated
data augmentation has been explored, particularly for robotic
manipulation. Many works leverage state-of-the-art genera-
tive models for visual [37], [38], [39] and semantic [40],
[41], [42] augmentations, while others rely on simple open-
loop kinematic replay of base trajectories [43], [44], [45]
or trajectory optimization [15] in simulation. Despite the
advances in manipulation, data augmentation for whole-body
loco-manipulation remains largely unexplored. The closest
prior work [46] interpolates keypoints to augment objects of
different shape, but it cannot deal with varied object poses
either. OMNIRETARGET directly addresses this gap.

III. INTERACTION-PRESERVING MOTION RETARGETING

A. Interaction Mesh with Hard Constraints

We leverage the interaction mesh [14] to preserve spatial
relationships between body parts, objects, and the envi-
ronment. The interaction mesh is defined as a volumetric
structure whose vertices consist of key robot or human
joints together with points sampled from objects and the
environment. By shrinking or stretching this mesh, we can
warp human motion onto the robot while preserving relative
spatial configurations and contact relationships.

Interaction Mesh Construction. We construct the inter-
action mesh by applying Delaunay tetrahedralization [48] to
user-defined key joint positions and randomly sampled object
and environment points. To more accurately maintain contact
relationships, we sample the object and environment surfaces
more densely than the body joints.

Optimization Objectives and Constraints. To preserve
the spatial relationships between the body parts, objects and
terrains, our primary objective is to minimize the Lapla-
cian deformation energy of the interaction meshes [49],
[50] constructed from two corresponding sets of keypoints.
The source set at frame t, Psource

t , is composed of user-
defined anatomical points on the human, and points randomly
sampled on the manipulated object and the environment.
The target set for the retargeted motion, P target

t , consists
of corresponding anatomical points on the robot, the same
manipulated object and environment points. Our method is
relatively robust to the precise placement of these keypoints,
requiring only a semantically consistent correspondence be-
tween the human and robot (e.g., hand to hand).

The Laplacian coordinate of the i-th keypoint pt,i ∈Pt is
defined as the difference between the point and the weighted
average of its neighbors j ∈N (i):

L(pt,i) = pt,i− ∑
j∈N (i)

wi j · pt, j, (1)



Methods Hard Kinematic
Constraints

Interaction w/
Object

Interaction w/
Terrain

Data Augmentation Optimization
Method

IMMA [22] ✓ ✗ ✗ ✗ QP
PHC [10] ✗ ✗ ✗ ✗ Gradient Descent
GMR [9] ✗ ✗ ✗ ✗ Mink [47]
VideoMimic [11] Soft Penalty ✗ ✓ ✗ JAX L-M

OMNIRETARGET (Ours) ✓ ✓ ✓ ✓ Sequential SOCP

TABLE I: Comparison of prior retargeting methods across different aspects.

where wi j is the normalized weight and we omit L’s de-
pendence on {pt, j} j ̸=i in the function definition for con-
ciseness. For all our experiments, we use uniform weights,
setting wi j = 1/|N (i)|. The deformation energy measures
the change in these Laplacian coordinates between the source
demonstration mesh Psource

t and the retargeted mesh P target
t :

EL = ∑
psource

t,i ∈Psource
t ,ptarget

t,i ∈P target
t

∥L(psource
t,i )−L(ptarget

t,i )∥2. (2)

We seek the robot configuration qt , consisting of the
floating base pose (quaternion and translation) and all joint
angles, that minimizes this deformation energy while satisfy-
ing a set of hard kinematic constraints. The robot’s keypoints
are determined by its configuration qt via forward kinematics
fi as probot

t,i (qt) = fi(qt)∈P target
t . At each time step, we solve

the following constrained, nonconvex program:

q⋆t = argmin
qt

∑
i
∥L(psource

t,i )−L(ptarget
t,i (qt))∥2 +∥qt −qt−1∥2

Q

(3a)
s.t. φ j(qt)≥ 0,∀ j (3b)

qmin ≤ qt ≤ qmax (3c)
vmin ·dt ≤ qt −qt−1 ≤ vmax ·dt (3d)

pF
t = pF

t−1,∀stance foot, (3e)

where Q is a cost matrix that encourages temporal smooth-
ness, φ j denotes the signed distance function for the j-th
collision pair, qmin/qmax and vmin/vmax are the configuration
and velocity bounds, pF

t denotes the foot position. A foot
is considered to be in the stance phase if its horizontal
velocity in the source motion (in the xy-plane) falls below
a threshold of 1 cm/s. This optimization program solves
for a temporally consistent robot trajectory that minimizes
interaction mesh deformation, subject to hard constraints for
collision avoidance (3b), joint and velocity limits (3c)–(3d),
and preventing foot skating (3e).

We solve (3) sequentially for each timestep using a
customized Sequential Quadratic Programming (SQP)-style
solver. Within each iteration, the objective (3a) is quadrat-
ically approximated and the hard constraints (3b)–(3e) are
linearized around the solution from the previous iteration.
To ensure temporal consistency and accelerate convergence,
the optimization at frame t is warm-started with the optimal
solution from the previous frame q⋆t−1. A key challenge
in this formulation is computing derivatives involving the
quaternion-based floating base orientation; our implemen-
tation leverages the automatic differentiation framework in

a) H1 Object Carrying

c) H1 Platform Climbing

b) T1 Object Carrying

d) T1 Platform Climbing

Fig. 3: Cross-embodiment robot-object-terrain interaction.

Drake [51], which correctly handles the differential geometry
of rotations on the S3 manifold [52].

Our interaction-mesh-based kinematic pipeline is highly
general. It adapts to different robot embodiments, including
the Unitree G1, H1, and Booster T1 (Fig. 3), by modifying
only the keypoint correspondences in the interaction mesh
and the robot’s collision model. It also supports diverse in-
teraction types: robot-object interactions from the OMOMO
[1], robot-terrain interactions from in-house MoCap data,
and robot-only motions on flat terrain from LAFAN1 [2].

B. Terrain, Object Shape and Spatial Augmentation

A key advantage of our framework is its capability for
systematic data augmentation, which eliminates the need for
collecting numerous, repetitive demonstrations with minor
spatial variations. Our method can transform a single human
demonstration into a rich and diverse dataset by paramet-
rically altering object configurations, shapes, or terrain fea-
tures. For each new scenario, we re-solve the optimization
problem with fixed Psource

t and augmented Pt : minimizing
the interaction mesh deformation finds a new, kinematically
valid robot motion {qt} that preserves the essential spatial
and contact relationships of the original interaction.

Robot-Object. We generate diverse interactions by aug-
menting both the object’s spatial configuration and its shape.
We apply translations and rotations to modify the object’s
initial pose (Fig. 4b) and blend the new initial pose with the
original object motion via interpolation with an exponential
schedule detailed in (14). In addition, we scale the three di-
mensions of the object (Fig. 4c). A critical component of this
process is constructing the interaction mesh in the object’s
local frame, which ensures that the robot’s interacting body
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Fig. 4: OMNIRETARGET generates systematic variations of (a) terrain height, (b) object initial pose, and (c) object shape from
a single human demonstration, with optimized motions in simulation (top) transferring consistently to hardware (bottom).

parts naturally follow the object’s transformation (Sec. VI-
C.2).

However, this alone can lead to trivial augmentations
where the entire robot undergoes a rigid transformation
along with the object. To generate more meaningful data
diversity, we introduce cost terms and constraints that anchor
parts of the robot’s body to the nominal trajectory {q̄⋆t }.
For instance, in a pick-up task, we encourage the robot to
discover new upper-body coordination by penalizing lower-
body deviations from the original motion:

∥qt − q̄⋆t ∥W , (4)

where W heavily penalizes the lower-body entries, constrain-
ing the initial foot poses to match the nominal trajectory

pF
0 = p̄F⋆

0 for left and right feet. (5)

These added objectives prevent the optimization from col-
lapsing to a simple rigid transform of the nominal trajectory
and instead produce genuinely new and diverse interactions.

Robot-Terrain. We generate diverse terrain scenarios by
scaling environmental features, such as varying the platform
height and depth (Fig. 4a), and introducing additional con-
straints. For instance, to encourage stable ground contact
when the terrain is elevated, we uniformly sample a grid
of points on the ground surface into the interaction mesh.

IV. RL TRAINING WITH MINIMAL FORMULATION

Having established our method for generating high-quality
kinematic references, we use RL to bridge the gap to
dynamics by training a low-level policy that converts these
trajectories into physically realizable actions, enabling zero-
shot transfer from simulation to hardware.

Reward engineering is often the main difficulty in hu-
manoid RL: prior works [9], [13], [32] rely on many ad-hoc
regularizers (e.g., foot flight and contact time) to compensate
for artifacts in noisy references, but tuning these terms is
tedious and fragile. In contrast, BeyondMimic [33] shows
that when references are clean [34], a minimal reward
is already sufficient for high-quality tracking. Since Om-
niRetarget produces such artifact-free, interaction-preserving
references, we can follow this minimal formulation directly,
achieving faithful tracking of dynamic interactions and zero-
shot sim-to-real transfer without any hyperparameter tuning.

Observations. To show that high-quality reference mo-
tions provide a sufficient prior for complex tasks, we design
a minimal proprioceptive observation space, as listed below,
where the agent is blind to explicit scene and object infor-
mation and must follow the reference trajectory precisely.

• Reference Motion: Reference Joint Position/Velocity,
Reference Pelvis Position/Orientation Error;

• Proprioception: Pelvis Linear/Angular Velocity, Joint
Position/Velocity;

• Previous Action: Policy action from last timestep.

For agile motions where state estimation is unreliable, we
mask out the pelvis linear position error and velocity.

Rewards. To show the benefits of high-quality reference
and avoid reward tuning, we use only five reward terms:

• Body Tracking: DeepMimic-style tracking term for
body position, orientation, linear and angular velocity;

• Object Tracking (where applicable): DeepMimic-style
tracking term for object position and orientation;

• Action Rate: Penalize rapid changes in action;
• Soft Joint Limit: Penalize robot joint limit violation;
• Self-Collision: Binary penalty on each body if its self-

collision force exceeds 1 N.

We use the same weights and hyperparameters from [33] out
of the box without tuning. For object tracking, we use the
same hyperparameters as body tracking terms.

Termination. We terminate training episodes with large
body tracking deviations [33]. For object loco-manipulation,
episodes terminate when the object deviates more than 1.0m
and 45° from the reference trajectory. We only apply this
criterion after the policy achieves reasonable body tracking.

Domain Randomization. To improve generalization
across object properties for a single reference motion, we
randomize the object’s physical parameters: mass (0.1–2 kg),
center of mass (±0.08 m), inertia (50–150%), and shape
(±10%). For the robot specifically, in contrast to the many
terms in prior works (e.g., random force injection (RFI),
motor PD, action delay), we only apply four terms:

• Torso COM Position: ±0.025 m in x, ±0.05 m in y,
±0.075 m in z;

• Joint default position: ±0.01 rad;
• Random push: 0.3 m/s, 0.78 rad/s for (1–3) s;
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Fig. 5: Additional hardware results showing diverse, agile and human-like behaviors.

• Observation noise: ±0.05 for orientation in Rot6D,
±0.5 m/s and ±0.2 rad/s for linear and angular velocity,
±0.01 rad and ±0.5 rad/s for joint position and velocity.

Policy Training. We group similar motions for faster train-
ing. All box-moving motions share a single multi-task policy,
while platform climbing uses one policy per reference.

V. EXPERIMENTAL RESULTS

In this section, we present a comprehensive experimental
validation of OMNIRETARGET. We first demonstrate the
breadth of complex behaviors enabled by our approach,
including natural object manipulation and terrain interaction.
We then provide a quantitative benchmark against state-of-
the-art baselines, evaluating performance across kinematic
quality metrics and downstream policy performance.

A. Whole-Body Scene-Object-Interaction

a) Agile Loco-Manipulation: OMNIRETARGET enables
RL policies to learn agile, whole-body motions for complex
scene interactions and loco-manipulation in simulation, cul-
minating in successful zero-shot sim-to-real transfer to hard-
ware. Shown in Fig. 5, policies trained on our data reproduce
a diverse range of expressive behaviors on a Unitree G1
humanoid, including natural box-carrying motions retargeted
from the OMOMO dataset, dynamically climbing a 0.9m-
high platform (70% of the robot’s height), and crawling over
slopes, showing clean and accurate contact sequences.

To showcase the full capabilities of our framework, we
present a long-horizon, dynamic sequence inspired by the
Boston Dynamics Atlas tool-use demo [53]. Visualized in
Fig. 1, our retargeted data enables the robot to carry a 4.6 kg
chair to a platform, use it as a stepstone to climb up, and then
leap off, performing a parkour-style roll to absorb the landing
impact. This 30-second, complex, multi-stage task highlights
OMNIRETARGET’s ability to produce precise and versatile

reference motions, pushing the boundaries of what is possible
for humanoids learning agile, human-like behaviors.

b) Sim-to-real with Augmented Data: We show that
the augmented motions from our pipeline can be used for
training and deployment effectively. As shown in Fig. 4,
the interaction mesh formulation allows OMNIRETARGET
to generalize a single nominal motion into box-picking
across shapes and positions, as well as platform climbing at
different heights. Notably, these augmented motions transfer
to hardware without reward tuning, effectively expanding the
repertoire of scenes and behaviors we can achieve in real.

In comparison, relying solely on domain randomization–
which perturbs object shapes and poses only during training–
performs poorly under our RL formulation, as the policies
struggle to explore far beyond the nominal reference. Policies
trained on our augmented data instead yield reliable success
(see video for comparison). Admittedly, additional reward
engineering could help, but it contradicts our minimal design
goal. Quantitatively, training and evaluating on the full aug-
mented dataset achieves a 79.1% success rate, comparable to
82.2% when evaluating on nominal motions only, showing
that kinematics augmentation substantially enlarges coverage
without significant performance degradation.

B. Benchmark Against Prior Retargeting Pipelines

We compare OMNIRETARGET against several widely-used
open-source retargeting baselines1: PHC [10], GMR [9] and
VideoMimic [11]. The generated dataset including 2.78 hours
of box carrying in OMOMO, 1 hour of in-house MoCap and
4.6 hours of LAFAN1 will be open-sourced.

1Baseline performance may depend on their hyperparameters. We initial-
ized from the default settings in their public codes, and further improved to
ensure consistent performance across different tasks.



Penetration Foot Skating Contact Preservation Downstream RL Policy

Method Duration ↓ Max Depth (cm) ↓ Duration ↓ Max Vel. (cm/s) ↓ Duration ↑ Success Rate ↑

Robot-Object Interaction (Retargeting from the OMOMO Dataset)

PHC [10] 0.68 ± 0.21 5.11 ± 3.09 0.05 ± 0.05 1.40 ± 0.80 0.96 ± 0.09 71.28% ± 22.55%
GMR [9] 0.83 ± 0.14 8.50 ± 3.94 0.02 ± 0.01 1.46 ± 0.45 0.99 ± 0.04 50.83 % ± 23.89%
VideoMimic [11] 0.60 ± 0.27 7.48 ± 4.95 0.12 ± 0.07 1.50 ± 0.70 0.77 ± 0.25 3.85% ± 8.41%
OMNIRETARGET 0.00 ± 0.01 1.34 ± 0.34 0 0 0.96 ± 0.09 82.20% ± 9.74%

Robot-Terrain Interaction (Retargeting from the In-House MoCap Dataset)

PHC 0.66 ± 0.36 7.74 ± 4.53 0.15 ± 0.04 2.03 ± 1.83 0.45 ± 0.28 52.63% ± 49.93%
GMR 0.91 ± 0.16 5.72 ± 3.84 0.04 ± 0.05 1.75 ± 3.01 0.67 ± 0.26 78.94% ± 40.77%
VideoMimic 0.83 ± 0.11 5.97 ± 3.58 0.14 ± 0.05 1.85 ± 1.38 0.47 ± 0.25 51.75% ± 49.23%
OMNIRETARGET 0.01 ± 0.02 1.37 ± 0.18 0 0 0.72 ± 0.19 94.73% ± 22.33%

Robot-Only (Retargeting from the LAFAN1 Dataset)

Unitree [34] 0.09 ± 0.13 3.22 ± 2.64 0.06 ± 0.03 1.46 ± 0.01 N/A 100%
OMNIRETARGET 0.00 ± 0.00 1.07 ± 0.00 0 0 N/A 100%

TABLE II: Quantitative comparison of kinematic retargeting quality and downstream RL performances.
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Fig. 6: Artifacts resulting from the retargeting baselines.

a) Kinematics Quality: We evaluate the kinematic qual-
ity of retargeted motions on a Unitree G1 with three criteria:

1) Penetration: Measured by the time duration (normal-
ized by the trajectory length) and maximum depth of
intersections between the robot, objects, and terrain.

2) Foot Skating: Quantified by the time duration (nor-
malized by the total desired foot sticking length) and
maximum skating velocity of a stance foot.

3) Contact Preservation: Quantified by the time duration
(normalized by the desired contact length). For robot-
object tasks, we measure hand-object contact. For
robot-terrain tasks, we measure contact between the
robot’s hands, toes, and heels with the terrain surface.

As illustrated in Tab. II, OMNIRETARGET significantly out-
performs all baselines across most kinematic metrics. While
OMNIRETARGET occasionally incurs minor penetration due
to the linearization of constraints (3b) in the sequential SOCP
solver, the violations are minimal and can be efficiently fixed
by RL. GMR achieves the highest contact preservation score
for robot-object interaction tasks; however, this outcome
largely reflects its keypoint-matching objective. In practice,
scaling human hand keypoints to the robot’s size often drives
the robot’s hands inside the object, leading to substantial
penetration errors (Fig. 6b). Overall, all baselines exhibit
significant penetration and foot skating (Fig. 6), degrading
the downstream RL performance, as discussed next.

For a direct comparison on pure locomotion, we retarget
motions from the LAFAN1 MoCap dataset [2] and bench-
mark them against the publicly available Unitree LAFAN1
retargeted dataset [34]. This serves as a strong baseline,
as it is widely considered a high-quality data source for
RL-based locomotion training [33]. Table II shows that
OMNIRETARGET’s motions exhibit fewer physical artifacts,
achieving better satisfaction of hard constraints.

b) Downstream RL Performance: A central observation
from prior works [33], [12] is that the quality of retargeted
motions strongly influences the performance of downstream
RL. To verify this, we select 39 challenging motions for
OMNIRETARGET and baselines, and train RL policies using
identical hyperparameters from [33] without manual tuning.
We evaluate the policies in simulation, and success is mea-
sured by training termination criteria.

Shown in Tab. II, retargeting quality directly impacts RL
success rates. OMNIRETARGET consistently achieves the
highest performance across tasks, exceeding baselines by
over 10% with lower variance, which indicates more stable
learning across different motions. PHC performs better than
GMR in object manipulation, likely due to lower penetration
with sufficient contact preservation, but worse in terrain
interaction, where its contact preservation drops by nearly
50%. Specifically for terrain interaction, we see that contact
preservation is directly proportional to the success rate. These
results suggest that both contact preservation and penetration
reduction are critical for generalizing RL policies across
diverse tasks, and OMNIRETARGET shows strength in both.

VideoMimic shows the weakest interaction preservation
among all baselines (Fig. 6c), likely due to its collision
avoidance soft cost conflicting with the keypoint matching
cost. This is compounded by its coarse collision model
originally designed for heightmaps, which is ill-suited for
precise loco-manipulation. Consequently, while its terrain-
interaction results are comparable to PHC, its performance
on object manipulation is poor. Although this could be
partially attributed to the tuning of its soft penalties, OM-
NIRETARGET demonstrates that a hard-constraint formula-
tion avoids such sensitivities altogether.



VI. CONCLUSION

In this work, we tackled a key data bottleneck caused by
a lack of high-quality, interaction-aware retargeting pipeline
in humanoid whole-body loco-manipulation. We introduced
OMNIRETARGET, a unified, interaction-preserving data gen-
eration engine that leverages an interaction mesh within a
single constrained optimization. Our experiments showed
that OMNIRETARGET significantly outperforms prior meth-
ods in kinematic quality, producing a diverse set of artifact-
free trajectories from single demonstrations. This high-
quality data enabled a proprioceptive RL policy, trained with
minimal formulation, to achieve long-horizon dynamic skills
on a physical humanoid via zero-shot sim-to-real transfer.

Ultimately, OMNIRETARGET demonstrates a paradigm
shift from patching lower-quality reference motions with
complex reward engineering to solving the problem at
its source with principled data generation. While our
current frame-by-frame optimization is mostly effective,
future work could explore jointly optimizing the entire
trajectory to enhance the framework’s robustness to
noisier motion sources, such as video data, or learning
autonomous visuomotor policies. By open-sourcing our
complete framework and the large-scale dataset of retargeted
trajectories, we hope to accelerate progress towards more
agile, capable, and versatile humanoid robots.
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APPENDIX

A. Different Sources of Human Motion Data

Human motion datasets contain rich pose and shape infor-
mation but differ in format as well as in the body shapes and
heights of demonstrators. Thus, we need to convert these in-
puts into a consistent representation, typically a time series of
global 3D keypoint positions {psource

0:T,i }, and scale the motions
to account for differences between human demonstrators and
the target robot, before solving the kinematics.

The datasets used in this work represent two common
formats:
• Parametric Human Models: The OMOMO dataset

uses the SMPL format [54], a parametric model rep-
resenting human body shape and pose-dependent varia-
tions using shape (β ) and pose (q) parameters.

• Skeleton Hierarchy: Both our in-house MoCap data
and the LAFAN1 dataset utilize the skeleton hierarchy
defined in the BVH format.

Different retargeting pipelines use different strategies to
handle these formats. We detail these preprocessing steps
below, denoting the human demonstrator’s pose as qdemo

t , the
SMPL forward model for the i-th keypoint as Mi, the original
demonstrator shape as β source, and the demonstrator’s i-th
keypoint position as pdemo

t,i .
1) SMPL Data: To handle data from parametric models

like SMPL, methods typically follow one of two strategies:
fitting the model to the robot’s morphology or directly scaling
the human’s keypoints.

a) Model Fitting (PHC, VideoMimic): This strategy fits
a scaled SMPL model to the robot’s morphology. PHC first
optimizes for an overall scaling factor α , and a set of SMPL
shape parameters β that best match the robot’s link length

Algorithm 1 Fit SMPL Shape (PHC)

Require: SMPL model M, robot urdf with forward kinemat-
ics f , q̄smpl = 0ns , q̄

robot = 0nx

Ensure: scaling factors α,β
1: α,β ← 1,010
2: for iter = 1, . . . ,max iter do
3: L(α,β ) = ∑i

∥∥( fi(q̄robot)−α ·Mi(q̄smpl;β )
∥∥2

4: α ← α−ηα ·∇α L
5: β ← β −ηβ ·∇β L
6: end for

in a canonical T-pose, as detailed in Alg. 1. The final source
keypoint positions are then generated from this fitted model:

psource
t,i = α ·Mi(qdemo

t ;β ). (6)

VideoMimic adopts a similar philosophy but integrates the
scaling directly into its main retargeting optimization, solving
for per-link scale factors jointly with the robot’s motion.

b) Direct Scaling (GMR & OMNIRETARGET): In con-
trast, GMR and OMNIRETARGET use a more direct ap-
proach. They generate keypoints from the human’s original
SMPL parameters β demo and then scale them to the robot’s
proportions. Both methods support detailed morphological
adaptation via per-bone scaling factors based on correspond-
ing human-robot link lengths. For simplicity in this work,
however, we adopt a single global scaling factor α , set to
the robot-to-human height ratio:

psource
t,i = α ·Mi(qdemo

t ;β
demo),α =

hrobot

hdemo
. (7)

2) Skeleton Hierarchy Data: For formats like BVH,
keypoint positions are derived from the skeleton’s forward
kinematics f skeleton. This data is then typically scaled to the
robot’s size using the height ratio:

psource
t,i =

hrobot

hdemo
· f skeleton

i (qdemo
t ). (8)

A key distinction among methods is their data compat-
ibility. While GMR and OMNIRETARGET are designed to
process both parametric model data and raw skeleton hierar-
chies, frameworks like PHC and VideoMimic are primarily
designed for SMPL data. Fitting other data formats to the
SMPL format is yet another tedious process.

B. Different Kinematic Retargeting Formulations
Once human motion is preprocessed into a series of source

keypoint positions {psource
0:T,i }, different methods formulate

the retargeting problem in distinct ways. As summarized
in Tab. III, these approaches vary in their optimization
strategy and objectives. The following sections detail the
mathematical formulation of each baseline method and our
proposed approach, OMNIRETARGET.

1) PHC: PHC formulates retargeting as a large-scale
trajectory-wise optimization problem. It applies gradient
descent to minimize the error between the source keypoint
positions and the robot’s keypoint positions over the entire
trajectory, as shown in Alg. 2.

https://github.com/kevinzakka/mink
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=-e1_QhJ1EhQ


Method Optimization Type Primary Objective Preprocessing Data Formats

PHC Trajectory-wise Optimization Keypoint Position Matching Model Fitting SMPL
GMR Per-Frame Optimization Keypoint Position & Orientation Matching Direct Scaling SMPL, BVH
VideoMimic Trajectory-wise Optimization Pairwise Distance & Orientation Preservation Model Fitting SMPL
IMMA Multi-Stage Trajectory-wise Optimization Interaction Mesh Deformation + IK Unknown Unknown

OMNIRETARGET Per-Frame Optimization Interaction Mesh Deformation Direct Scaling SMPL, BVH

TABLE III: Comparison of different retargeting methodologies

Algorithm 2 Retarget Robot Motion (PHC)

Require: Robot urdf, source keypoint positions {psource
0:T,i }

Ensure: q0:T
1: q0:T ← [0nx ]T
2: for iter = 1, . . . ,max iter do
3: L (q0:T ) = ∑

T
t=0 ∑i

∥∥∥ fi(qt)− psource
t,i

∥∥∥2

4: q0:T ← clamp(q0:T −∇q0:T L (q0:T ),qmin,qmax)
5: end for

2) GMR: GMR performs retargeting by solving an inverse
kinematics (IK) problem at each frame (3). At each timestep,
GMR finds the robot configuration qt that matches the
source keypoint positions and orientations via the following
optimization program:

q⋆t = argmin
qt

∑
i

∥∥ f p
i (qt)− psource

t,i
∥∥2

+
∥∥∥ f θ

i (qt)−θ
source
t,i

∥∥∥2

s.t. qmin ≤ qt ≤ qmax,
(9)

where f p
i and f θ

i are the robot forward kinematics for
the i-th keypoint’s position and orientation, respectively.
Leveraging the mink [47] library, GMR solves this program
in a Sequential Quadratic Programming fashion.

Algorithm 3 Retarget Robot Motion (GMR)

Require: Robot urdf, source keypoint positions {psource
0:T,i }

and orientations {θ source
0:T,i }

Ensure: q0:T
1: for t = 0, . . . ,T do
2: qt ← Solve IK (9)
3: end for

3) VideoMimic: VideoMimic jointly optimizes for the
robot motion q0:T and SMPL per-link scaling factor β over
the entire trajectory. The primary objective is to preserve
the scaled pairwise distance and orientation between each
keypoint pair (i, j):

Lpairwise = ∑
t,i∈N ( j)

∥βi j ·(pdemo
t,i − pdemo

t, j )−( fi(qt)− f j(qt))∥2
2,

(10)
with soft penalties on foot contact matching Lcontact, foot
skating Lskating, collision Lcollision, joint limits Ljoint and
temporal smoothness Lsmooth:

q⋆0:T ,β
⋆ =argmin

q0:T ,β

Lpairwise +λc ·Lcontact +λs ·Lskate+

λcl ·Lcollision +λ j ·Ljoint +λsm ·Lsmooth + . . .
(11)

Algorithm 4 Retarget Robot Motion (VideoMimic)

Require: Robot urdf, demonstrator’s original keypoint po-
sitions {pdemo

0:T,i }
Ensure: q0:T ,β ← Solve (11) for the entire trajectory

4) IMMA Multi-stage Optimization: IMMA relies on a
complex, multi-stage pipeline: first, it optimizes the interme-
diate robot keypoint positions to warp the interaction mesh
from the human to the robot with minimal deformation by
solving the following program

p⋆t,i = argmin
pti

∑
i
∥L(psource

t,i )−L(pt,i)∥2

s.t. φ j(qt)≥ 0,∀ j
∥pt,i− pt, j∥2 = li j,∀bone

pF
t = pF

t−1,∀stance foot,

(12)

where li j is the bone length between the i-th and j-th joints.
Then, it solves a separate IK problem to recover joint angles
that best match the intermediate keypoints:

q⋆t = argmin
qt

∑
i
∥ fi(qt)− p⋆t,i∥2

2. (13)

In later stages, additional hard constraints on the feet and
waist are imposed to prevent foot slipping and ensure dy-
namic balancing. This sequential and fragmented approach
produces dynamically consistent motions but fails to consider
crucial kinematic constraints like joint and velocity limits.

5) OMNIRETARGET: OMNIRETARGET, as outlined in
Alg. 5, operates frame-by-frame by minimizing the Laplacian
deformation of the interaction meshes. The core objective
(3a) is flexible and can be augmented with task-specific costs,
such as the orientation matching term from GMR, providing
a unified and extensible framework for motion retargeting.

Algorithm 5 Retarget Robot Motion (OMNIRETARGET)

Require: Robot urdf, source keypoint positions {psource
0:T,i }

Ensure: q0:T
1: for t = 0, . . . ,T do
2: qt ← Solve interaction mesh optimization (3)
3: end for

C. Data Augmentation Details

1) Augmented Object Trajectory: To generate a perturbed
object trajectory, we introduce a transient offset that decays



Fig. 7: The Laplacian coorinate should stay the same when
the object rotates 180◦.

Fig. 8: The actual target (left) and source (right) interaction
meshes used for optimization.

exponentially over time. Let the original trajectory be de-
noted by (pob j(t),θob j(t)). We define an initial positional
offset ∆pob j and rotational offset ∆θob j that are applied at
the onset of object motion, tm. The augmented trajectory,
(p̃ob j(t), θ̃ob j(t)), is then formulated as:

p̃ob j(t) =

{
∆pob j + pob j(0) if t < tm
∆pob j e−(t−tm)/τp + pob j(t) if t ≥ tm

(14a)

θ̃ob j(t) =

{
∆θob j⊕θob j(0) if t < tm
∆θob j e−(t−tm)/τθ ⊕θob j(t) if t ≥ tm

(14b)

where τp and τθ are time constants governing the rate
of decay for the translational and rotational perturbations,
respectively. The ⊕ operator denotes composition for orien-
tations (e.g., quaternion multiplication).

2) Interaction Mesh Construction in Object Frame: For
robot-object interactions, it is crucial to construct the interac-
tion mesh in the object’s local coordinate frame. This ensures
that the Laplacian coordinates, which encode relative spatial
relationships, are invariant to the object’s global rotation
and translation. As illustrated in Fig. 7, when the object
rotates by 180◦ (indicated by the black arrow), the Laplacian
coordinate of the object in the world frame LW changes from
(0,1) to (0,−1), while the Laplacian coordinate calculated
in the object frame LO remains constant. Using object-frame
coordinates is therefore essential for preserving the intended
interaction geometry during object spatial transformation.

D. Sequential SOCP Details
At each time step t, we iteratively solve a Second-Order

Cone Program (SOCP) for the optimal change in the robot’s

a) Eval Histogram for Robot-Object Interaction 

b) Eval Histogram for Robot-Terrain Interaction 

Fig. 9: Histograms from the downstream RL evaluation
showing the failure patterns for the baselines in different
tasks.

configuration dq util convergence for up to 10 iterations. For
conciseness, we omit the time index t for variables within
the Sequential SOCP loop.

The optimization finds the increment dqn at the n-th
iteration. The configuration is updated using this increment,
starting from the previous time step’s solution (q̄0 = q⋆t−1):

q̄n+1 = q̄n +dq⋆n.

The optimal increment dq⋆n is the solution to the following
SOCP, which is linearized around the current iterate q̄n:

dq⋆n = argmin
dqn

∥Lsource− (Jn
L ·dqn + L̄target

n )∥2 (15a)

+∥q̄n +dqn−qt−1∥2
Q (15b)

s.t. Jn
j ·dqn +φ j(q̄n)≥ 0,∀ j (15c)

qmin ≤ q̄n +dqn ≤ qmax (15d)
vmin ·dt ≤ q̄n +dqn−qt−1 ≤ vmax ·dt

(15e)

pF
t (q̄n)+ Jn

F ·dqn = pF
t−1,∀stance foot

(15f)
∥dqn∥2 ≤ ε, (15g)

where
• Lsource = vec({L(psource

t,i )})
• Ltarget(q) = vec({L(ptarget

t,i (q))})
• L̄target

n = vec({L(ptarget
t,i (q̄n))})

• Jn
L = ∂Ltarget/∂q|q=q̄n

• Jn
j = ∂φ j/∂q|q=q̄n

• Jn
F = ∂ pF

t /∂q|q=q̄n .
The second-order cone constraint (15g) is a trust region
constraint with radius ε (we use ε = 0.2) that keeps the step
size small, ensuring the linear approximations remain valid.

E. Downstream RL Evaluation Breakdown

Shown in Fig. 9, we present histograms from the down-
stream RL evaluation (Sec. V-B.0.b) to illustrate failure
patterns and variance across OmniRetarget and baselines.
These histograms break down failure rates by each motion



for two tasks: robot–object interaction and robot–terrain
interaction, highlighting not only overall averages but also
how failures distribute across different motions. We do not
include augmented motions as baselines do not support
augmentation.

In robot–object interaction, the motions are modest while
object properties are heavily randomized. Since the motions
are not aggressive, most policies can adapt even to low-
quality references and achieve at least one success, except
VideoMimic, which fails systematically due to poor inter-
action preservation. This task therefore measures robustness
rather than accuracy. We see that GMR shows broader failure
spread with lower success rates, likely due to penetration
issues that reduce robustness under placement changes. PHC
shows improved robustness, while OmniRetarget achieves
the most robust performance, with results concentrated in
the high-success region.

In contrast, climbing terrains requires much more agile
and challenging motions and thus, demands precise reference
motions: if the quality is low, the agent fails outright with no
successes. Here, PHC and VideoMimic perform the worst,
with nearly half the motions failing entirely. GMR delivers
somewhat better references but still fails on four motions,
while OmniRetarget fails on only one. These results show
that OmniRetarget not only provides superior robustness
under variation but also higher reference accuracy.

For the one remaining failure, we believe that it is limited
by the simple RL formulation we use. For future work, an
interesting direction could be to extend the current RL for-
mulation with curriculum learning to support these extremely
difficult motions.
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